中文字幕在线观看,亚洲а∨天堂久久精品9966,亚洲成a人片在线观看你懂的,亚洲av成人片无码网站,亚洲国产精品无码久久久五月天

機器學習+天體物理:星辰圖像的更高效處理方法

2018-10-31    來源:raincent

容器云強勢上線!快速搭建集群,上萬Linux鏡像隨意使用

為了應對宇宙數(shù)據(jù)即將出現(xiàn)的指數(shù)級增長趨勢,天體物理學家也開始將目光投向機器學習。

Kevin Schawinski的問題

2007年,他在牛津大學擔任天體物理學家,努力回顧了斯隆數(shù)字巡天計劃中超過900,000個星系七年中有價值的照片。他花了幾天時間翻來覆去觀察這些圖像,并記錄下了一個星系是螺旋形還是橢圓形的,以及它的旋轉(zhuǎn)方式。

技術的進步加快了科學家收集信息的能力,但科學家們處理信息的速度卻沒有相應提升。 Schawinski和同事Chris Lintott花費了大量的時間來處理這個任務(即是上面提到處理星辰圖像的任務),但并沒有得到良好的效果,因此,他們決定必須找到更好的方法來解決這個問題。

Schawinski和Lintott通過一個名為Galaxy Zoo的公民科學項目從公眾中招募志愿者來幫助他們分類網(wǎng)上的星辰圖像,并向多名志愿者展示相同的圖像以便讓他們能夠檢查彼此的工作。最終,超過10萬人參與并完成了這一項任務,如果靠他們自己的話,這項任務可能需要數(shù)年時間才能完成,但通過這種方式不到6個月就完成了。

公民科學家繼續(xù)為圖像分類任務做出貢獻。但技術也在不斷發(fā)展。

暗能量光譜儀器計劃于2019年開始,五年內(nèi)將測量約3000萬個星系和類星體的速度。大型天氣調(diào)查望遠鏡定于20世紀20年代初開始工作,每晚將收集超過30TB的數(shù)據(jù) – 并持續(xù)十年。

“來自這些調(diào)查的數(shù)據(jù)量至少要大一個數(shù)量級,”芝加哥大學博士后研究員Camille Avestruz說。

為了跟上數(shù)據(jù)的增長,像Schawinski和Avestruz這樣的天體物理學家已經(jīng)著手招募了一類新的、非人類的科學家:機器。

研究人員正在使用人工智能來幫助完成天文學和宇宙學中的各種任務,從圖像分析到望遠鏡調(diào)度。

超級調(diào)度,計算機級別的校準

人工智能似乎是計算機可以推理,決策,學習和執(zhí)行與人類智能相關的任務的方式的總稱。機器學習是人工智能的一個子領域,它使用統(tǒng)計技術和模式識別來訓練計算機做出決策,而不是編寫更直接的算法。

2017年,斯坦福大學的一個研究小組利用機器學習來研究強引力透鏡的圖像,這種現(xiàn)象指的是空間中物質(zhì)的積累足夠密集時會彎曲光波。由于許多引力透鏡不能單獨通過發(fā)光物質(zhì)來解釋,因此更好地了解引力透鏡可以幫助天文學家深入了解暗物質(zhì)。

過去,科學家通過比較重力透鏡的實際圖像,并使用計算機大量模擬數(shù)學透鏡模型來進行研究,這個過程可能需要數(shù)周甚至數(shù)月才能生成單個圖像。但一個斯坦福大學的團隊表明,機器學習算法可以將這個過程加速數(shù)百萬倍。

Schawinski現(xiàn)在是蘇黎世聯(lián)邦理工學院的天體物理學家,并在他目前的工作中應用了機器學習。他的小組使用了稱為生成對抗網(wǎng)絡(GAN)的工具來恢復因隨機噪聲而降級的圖像。

機器學習在天體物理學中的另一個應用涉及解決諸如調(diào)度之類的邏輯挑戰(zhàn)。對于望遠鏡來說,一夜之間只有一個固定的時長可以使用給定的高倍望遠鏡,并且在一個確定的時間它只能指向某個特定的方向。芝加哥大學的物理學家,費米實驗室機器智能小組的成員布萊恩諾德說:“使用望遠鏡數(shù)周就能花費數(shù)百萬美元。”該公司的任務是幫助所有高能量領域的研究人員在他們的工作中部署AI。

機器學習可以幫助天文臺安排望遠鏡,使他們能夠盡可能有效地收集數(shù)據(jù)。 Schawinski的實驗室和Fermilab都在使用一種稱為強化學習的技術來訓練算法解決這樣的問題。在強化學習中,算法不是針對“正確”和“錯誤”答案進行訓練,而是通過依賴于其輸出的不同反饋。算法必須在選項的安全性,可預測的收益與通過意外方案完美解決問題的可能性之間取得平衡。

不斷增長的AI應用領域

當芝加哥大學豐田技術學院的計算機科學研究生Shubhendu Trivedi開始與他的導師Risi Kondor一起教授深度學習的研究生課程時,他很高興地看到有很多來自物理科學的研究人員報名參加。他們對如何在他們的研究中使用AI知之甚少,Trivedi意識到機器學習專家能夠幫助不同領域的科學家找到利用這些AI新技術的方法,但目前這一需求并沒有得到滿足。

他與班上研究人員進行的對話演變?yōu)楹献,包括參加深空天體實驗室,這是一個天文學和人工智能研究小組,由Avestruz,Nord和太空望遠鏡科學研究所的天文學家Joshua Peek共同創(chuàng)立。本月早些時候,他們提交了他們的第一篇同行評審論文,展示了基于人工智能的方法在宇宙微波背景下測量引力透鏡的效率。

論文地址:

https://arxiv.org/abs/1810.01483

事實上,各地都出現(xiàn)了類似的團體,從瑞士的Schawinski集團到澳大利亞的天體物理和超級計算中心。天文學中機器學習技術的采用正在迅速增加。在arXiv對天文學論文的搜索中,“深度學習”和“機器學習”這兩個術語在2018年前七個月的論文標題中出現(xiàn)的比2017年全年更多,而2017年全年都超過了2016年。

“五年前,天文學中的機器學習算法是在大多數(shù)情況下比人類表現(xiàn)更差的深奧工具,”Nord說,然而如今,越來越多的算法開始優(yōu)于人類:“你會驚訝于它有多少低懸可摘的果實。”

但是將機器學習引入天體物理學研究也存在很多障礙。其中最大的問題在于機器學習對天文學家來說往往是一個黑盒。Schawinski說:“我們不了解神經(jīng)網(wǎng)絡如何工作和理解事物”,對于使用工具而不完全了解它們的工作方式,科學家們感到很擔心。

另一個絆腳石則是不確定性。機器學習通常建立于具有一定量噪聲或誤差的輸入,并且模型本身會做出引入不確定性的假設。研究人員在工作中使用機器學習技術需要了解這些不確定性,并將這些不確定性準確地傳達給彼此和更廣泛的研究領域。

機器學習的現(xiàn)狀發(fā)生了如此迅速的變化,研究人員不愿意對未來五年即將發(fā)生的事情進行預測。 “如果數(shù)據(jù)能直接從望遠鏡中取出,而機器可以利用這些數(shù)據(jù),發(fā)現(xiàn)并創(chuàng)造出意想不到的模式,我會非常興奮,”Nord說。

無論未來的發(fā)展形式如何,數(shù)據(jù)的發(fā)展都會越來越快。研究人員越來越相信,人工智能將成為幫助他們跟上發(fā)展的必要條件。

相關報道:

https://www.symmetrymagazine.org/article/studying-the-stars-with-machine-learning

標簽: 安全 搜索 網(wǎng)絡

版權申明:本站文章部分自網(wǎng)絡,如有侵權,請聯(lián)系:west999com@outlook.com
特別注意:本站所有轉(zhuǎn)載文章言論不代表本站觀點!
本站所提供的圖片等素材,版權歸原作者所有,如需使用,請與原作者聯(lián)系。

上一篇:七個不容易被發(fā)現(xiàn)的生成對抗網(wǎng)絡(GAN)用例

下一篇:各種課程涌現(xiàn)以提高數(shù)據(jù)科學家技能